资源类型

期刊论文 288

年份

2023 42

2022 33

2021 25

2020 29

2019 20

2018 18

2017 10

2016 10

2015 17

2014 7

2013 8

2012 11

2011 8

2010 6

2009 11

2008 6

2007 12

2006 1

2004 1

2003 2

展开 ︾

关键词

合成生物学 2

Tetrasphaera 1

ATP荧光检测 1

CO2捕集 1

Cascaded 型检测器 1

N 1

N-二乙基乙醇胺 1

N3C空位 1

PET酶 1

PET降解 1

RGB-D 1

U251细胞 1

WEP 1

WLAN 1

上举力 1

上行非正交多址;Generalized Welch界等式;多级接收功率;序列分组 1

中国 1

临界浓度 1

二氧化碳吸收 1

展开 ︾

检索范围:

排序: 展示方式:

Kinetic analysis of anaerobic phosphorus release during biological phosphorus removal process

DOU Junfeng, LIU Xiang, LUO Guyuan

《环境科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 233-239 doi: 10.1007/s11783-007-0040-2

摘要: Enhanced biological phosphorus removal (EBPR) is a commonly used and sustainable method for phosphorus removal from wastewater. Poly-β-hydroxybutyrate (PHB), polyphosphate, and glycogen are three kinds of intracellular storage polymers in phosphorus accumulation organisms. The variation of these polymers under different conditions has an apparent influence on anaerobic phosphorus release, which is very important for controlling the performance of EBPR. To obtain the mechanism and kinetic character of anaerobic phosphorus release, a series of batch experiments were performed using the excessively aerated sludge from the aerobic unit of the biological phosphorus removal system in this study. The results showed that the volatile suspended solid (VSS) had an increasing trend, while the mixed liquid suspended sludge (MLSS) and ashes were reduced during the anaerobic phosphorus release process. The interruption of anaerobic HAc-uptake and phosphorus-release occurs when the glycogen in the phosphorus-accumulating-organisms is exhausted. Under the condition of lower initial HAc-COD, HAc became the limiting factor after some time for anaerobic HAc uptake. Under the condition of higher initial HAc-COD, HAc uptake was stopped because of the depletion of glycogen in the microorganisms. The mean ratio of ΔρP/Δρ, Δρ/ΔρPHB, ΔρP/ΔCOD, and ΔρPHB/ΔCOD was 0.48, 0.50, 0.44, and 0.92, respectively, which was nearly the same as the theoretical value. The calibrated kinetic parameters of the HAc-uptake and phosphorus-release model were evaluated as follows: Q was 164 mg/(g °h), Q was 69.9 mg/(g °h), K was 0.005, and KCOD was 3 mg/L. An apparently linear correlation was observed between the ratio of ΔρP/ΔCOD and pH of the solution, and the equation between them was obtained in this study.

关键词: interruption     process     ΔρP/Δρ     Enhanced biological     Poly-β-hydroxybutyrate    

Enhanced nutrients removal from municipal wastewater through biological phosphorus removal followed by

Yandong Yang,Liang Zhang,Hedong Shao,Shujun Zhang,Pengchao Gu,Yongzhen Peng

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0911-0

摘要: EBPR and PN/A were combined to enhance nutrients removal from municipal wastewater. High effluent quality of 0.25 mg TP?L and 10.8 mg TN?L was obtained. Phosphorus and nitrogen removal was achieved in two separated units. A proper post-anoxic phase improved the nitrogen removal performance of PN/A unit. Conventional biological removal of nitrogen and phosphorus is usually limited due to the lack of biodegradable carbon source, therefore, new methods are needed. In this study, a new alternative consisting of enhanced biological phosphorus removal (EBPR) followed by partial nitritation-anammox (PN/A), is proposed to enhance nutrients removal from municipal wastewater. Research was carried out in a laboratory-scale system of combined two sequencing batch reactors (SBRs). In SBR1, phosphorus removal was achieved under an alternating anaerobic-aerobic condition and ammonium concentration stayed the same since nitrifiers were washed out from the reactor under short sludge retention time of 2–3 d. The remaining ammonium was further treated in SBR2 where PN/A was established by inoculation. A maximum of nitrogen removal rate of 0.12 kg N?m ?d was finally achieved. During the stable period, effluent concentrations of total phosphorus and total nitrogen were 0.25 and 10.8 mg?L , respectively. This study suggests EBPR-PN/A process is feasible to enhance nutrients removal from municipal wastewater of low influent carbon source.

关键词: Phosphorus removal     Partial nitrification     Anammox     Municipal wastewater    

Tetrasphaera富集的强化生物除磷微生物组的时间动态和效能关联 Article

王慧, 王玉波, 张国庆, 赵泽, 鞠峰

《工程(英文)》 2023年 第29卷 第10期   页码 168-178 doi: 10.1016/j.eng.2022.10.016

摘要:

基于16S rRNA扩增子测序技术对全球污水处理厂(WWTP)强化生物除磷(EBPR)工艺中微生物群落的研究表明Tetrasphaera是丰度最高的聚磷菌(PAOs)。然而,目前对于Tetrasphaera 如何在 EBPR 中进行选择性富集尚不清楚。本文通过“自上而下”的方法利用复合碳源和低浓度烯丙基硫脲构建了Tetrasphaera富集的EBPR微生物组,其16S序列的丰度在第 113 天可达 40%。Tetrasphaera富集的微生物组具有高的营养物去除效率,可以实现约85% 的磷(P)去除和约80%的氮(N)去除,其污泥灰分中的P回收率相较于普通污水处理厂活性污泥提高了 23.2 倍。研究表明,添加1 mg·L−1 烯丙基硫脲同时促进了 Tetrasphaera PAOs 和 Microlunatus PAOs 的增加,并且显着降低了氨氧细菌Nitrosomonas和PAOs的潜在竞争者 Brevundimonas Paracoccus 的相对丰度,促进了 EBPR 微生物组的建立。16S rRNA 基因分析表明,体系中的EBPR-ASV0001与 Tetrasphaera japonica 的亲缘关系最为相近,其可能代表了一种新的PAOs。本研究为通过烯丙基硫脲促进Tetrasphaera富集的微生物组建立提供了新的认知,或可用于指导未来污水处理系统工艺的升级和优化,从而帮助实现高浓度废水的同步脱氮除磷。

关键词: 强化生物除磷(EBPR)     聚磷微生物 (PAOs)     Tetrasphaera     微生物组     磷回收    

Occurrence and removal of

Lin WANG,Yongmei LI,Xiaoling SHANG,Jing SHEN

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 519-530 doi: 10.1007/s11783-013-0610-4

摘要: Six wastewater treatment plants (WWTPs) were investigated to evaluate the occurrence and removal of -nitrosodimethylamine (NDMA), NDMA formation potential (FP) and four specific NDMA precursors, dimethylamine (DMA), trimethylamine (TMA), dimethylformamide (DMFA) and dimethylaminobenzene (DMAB). DMA and tertiary amines with DMA functional group commonly existed in municipal wastewater. Chemically enhanced primary process (CEPP) had no effect on removal of either NDMA or NDMA FP. In WWTPs with secondary treatment processes, considerable variability was observed in the removal of NDMA (19%–85%) and NDMA FP (16%–76%), moreover, there was no definite relationship between the removal of NDMA and NDMA FP. DMA was well removed in all the six surveyed WWTPs; its removal efficiency was greater than 97%. For the removal of tertiary amines, biologic treatment processes with nitrification and denitrification had better removal efficiency than conventional activated sludge process. The best removal efficiencies for TMA, DMFA and DMAB were 95%, 68% and 72%, respectively. CEPP could remove 73% of TMA, 23% of DMFA and 36% of DMAB. After UV disinfection, only 17% of NDMA was removed due to low dosage of UV was applied in WWTP. Although chlorination could reduce NDMA precursors, NDMA concentration was actually increased after chlorination.

关键词: N-nitrosodimethylamine     NDMA precursors     NDMA formation potential     biological treatment process     chemically enhanced primary process    

Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0717-z

摘要: Bone grinding is an essential and vital procedure in most surgical operations. Currently, the insufficient cooling capacity of dry grinding, poor visibility of drip irrigation surgery area, and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding. A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling (U-NJMC) is innovatively proposed to solve the technical problem. It combines the advantages of ultrasonic vibration (UV) and nanoparticle jet mist cooling (NJMC). Notwithstanding, the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated. The grinding force, friction coefficient, specific grinding energy, and grinding temperature under dry, drip irrigation, UV, minimum quantity lubrication (MQL), NJMC, and U-NJMC micro-grinding were compared and analyzed. Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N, which were 75.1% and 82.9% less than those in dry grinding, respectively. The minimum friction coefficient and specific grinding energy were achieved using U-NJMC. Compared with dry, drip, UV, MQL, and NJMC grinding, the friction coefficient of U-NJMC was decreased by 31.3%, 17.0%, 19.0%, 9.8%, and 12.5%, respectively, and the specific grinding energy was decreased by 83.0%, 72.7%, 77.8%, 52.3%, and 64.7%, respectively. Compared with UV or NJMC alone, the grinding temperature of U-NJMC was decreased by 33.5% and 10.0%, respectively. These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone.

关键词: micro-grinding     biological bone     ultrasonic vibration (UV)     nanoparticle jet mist cooling (NJMC)     grinding force     grinding temperature    

Microorganism-derived biological macromolecules for tissue engineering

《医学前沿(英文)》 2022年 第16卷 第3期   页码 358-377 doi: 10.1007/s11684-021-0903-0

摘要: According to literature, certain microorganism productions mediate biological effects. However, their beneficial characteristics remain unclear. Nowadays, scientists concentrate on obtaining natural materials from live creatures as new sources to produce innovative smart biomaterials for increasing tissue reconstruction in tissue engineering and regenerative medicine. The present review aims to introduce microorganism-derived biological macromolecules, such as pullulan, alginate, dextran, curdlan, and hyaluronic acid, and their available sources for tissue engineering. Growing evidence indicates that these materials can be used as biological material in scaffolds to enhance regeneration in damaged tissues and contribute to cosmetic and dermatological applications. These natural-based materials are attractive in pharmaceutical, regenerative medicine, and biomedical applications. This study provides a detailed overview of natural-based biomaterials, their chemical and physical properties, and new directions for future research and therapeutic applications.

关键词: biological macromolecules     regenerative medicine     tissue engineering     exopolysaccharide     carbohydrate    

Low intensity ultrasound stimulates biological activity of aerobic activated sludge

LIU Hong, YAN Yixin, WANG Wenyan, YU Yongyong

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 67-72 doi: 10.1007/s11783-007-0013-5

摘要: This work aims to explore a procedure to improve biological wastewater treatment efficiency using low intensity ultrasound. The aerobic activated sludge from a municipal wastewater treatment plant was used as the experimental material. Oxygen uptake rate (OUR) of the activated sludge (AS) was determined to indicate the changes of AS activity stimulated by ultrasound at 35 kHz for 0 40 min with ultrasonic intensities of 0 1.2 W/cm. The highest OUR was observed at the ultrasonic intensity of 0.3 W/cm and an irradiation period of 10 min; more than 15% increase was achieved immediately after sonication. More significantly, the AS activity stimulated by ultrasound could last 24 h after sonication, and the AS activity achieved its peak value within 8 h after sonication, or nearly 100% higher than the initial level after sonication. Therefore, to improve the wastewater treatment efficiency of bioreactors, ultrasound with an intensity of 0.3 W/cm could be employed to irradiate a part of the AS in the bioreactor for 10 min every 8 h.

关键词: sonication     irradiation     kHz     treatment efficiency     AS activity    

Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia

Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-019-1217-1

摘要: The SRAO phenomena tended to occur only under certain conditions. High amount of biomass and non-anaerobic condition is requirement for SRAO. Anammox bacteria cannot oxidize ammonium with sulfate as electron acceptor. AOB and AnAOB are mainly responsible for ammonium conversion. Heterotrophic sulfate reduction mainly contributed to sulfate conversion. For over two decades, sulfate reduction with ammonium oxidation (SRAO) had been reported from laboratory experiments. SRAO was considered an autotrophic process mediated by anammox bacteria, in which ammonium as electron donor was oxidized by the electron acceptor sulfate. This process had been attributed to observed transformations of nitrogenous and sulfurous compounds in natural environments. Results obtained differed largely for the conversion mole ratios (ammonium/sulfate), and even the intermediate and final products of sulfate reduction. Thus, the hypothesis of biological conversion pathways of ammonium and sulfate in anammox consortia is implausible. In this study, continuous reactor experiments (with working volume of 3.8L) and batch tests were conducted under normal anaerobic (0.2≤DO<0.5 mg/L) / strict anaerobic (DO<0.2 mg/L) conditions with different biomass proportions to verify the SRAO phenomena and identify possible pathways behind substrate conversion. Key findings were that SRAO occurred only in cases of high amounts of inoculant biomass under normal anaerobic condition, while absent under strict anaerobic conditions for same anammox consortia. Mass balance and stoichiometry were checked based on experimental results and the thermodynamics proposed by previous studies were critically discussed. Thus anammox bacteria do not possess the ability to oxidize ammonium with sulfate as electron acceptor and the assumed SRAO could, in fact, be a combination of aerobic ammonium oxidation, anammox and heterotrophic sulfate reduction processes.

关键词: Anammox bacteria     Autotrophic     Biological conversion     Sulfate reducing ammonium oxidation (SRAO)    

Short-term effect of temperature variation on the competition between PAOs and GAOs during acclimation period of an EBPR system

Nanqi REN, Han KANG, Xiuheng WANG, Nan LI

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 277-282 doi: 10.1007/s11783-010-0226-x

摘要: Sequencing batch reactor (SBR) for enhanced biological phosphorus removal (EBPR) processes was used to investigate the impact of the temperature shock on the competition between phosphorus-accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) in start-up stage. During the 34 days operation, SBR was set with temperature variation(0–5 d, 22±1°C; 6–13 d, 29±1°C; 14–34 d, 14±1°C). PAOs and GAOs were analyzed by fluorescent in situ hybridization (FISH), and intracellular polyphosphate granules were stained by Neisser-stain. The results showed that the influence of temperature shock on PAOs’ abundance was more serious than that on GAOs in the enriching process. Under sudden and substantially temperature variation, from 22±1°C to 29±1°C and then to 14±1°C, the domination of PAOs was deteriorated. After temperature shock, PAOs’ competitive advantages at low temperature that concluded in other study did not appear in our study. As mesophilic, GAOs (indicated by and ) were more temperature adaptive and better grew and took the domination at 14±1°C in the end. In the competition process, organisms of tetrad forming organisms (TFOs)-like shape which were considered as typical GAOs, were observed. With the evidence of poly-P granules containing by Neisser-straining and result of FISH, these organisms of TFOs-like shape were better to be assumed as adaption state or a special self-protecting shape of PAOs.

关键词: fluorescent in situ hybridization (FISH)     tetrad forming organisms (TFOs)     temperature variation     enhanced biological phosphorus removal (EBPR)    

Overlooked nitrogen-cycling microorganisms in biological wastewater treatment

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1426-2

摘要:

• AOA and comammox bacteria can be more abundant and active than AOB/NOB at WWTPs.

关键词: Ammonia oxidizing archaea (AOA)     Complete ammonia oxidizing (comammox) bacteria     Dissimilatory nitrate reduction to ammonium (DNRA) bacteria     Nitrate/nitrite-dependent anaerobic methane oxidizing (NOx-DAMO) microorganisms     Engineering application    

Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0720-4

摘要: Aerospace aluminum alloy is the most used structural material for rockets, aircraft, spacecraft, and space stations. The deterioration of surface integrity of dry machining and the insufficient heat transfer capacity of minimal quantity lubrication have become the bottleneck of lubrication and heat dissipation of aerospace aluminum alloy. However, the excellent thermal conductivity and tribological properties of nanofluids are expected to fill this gap. The traditional milling force models are mainly based on empirical models and finite element simulations, which are insufficient to guide industrial manufacturing. In this study, the milling force of the integral end milling cutter is deduced by force analysis of the milling cutter element and numerical simulation. The instantaneous milling force model of the integral end milling cutter is established under the condition of dry and nanofluid minimal quantity lubrication (NMQL) based on the dual mechanism of the shear effect on the rake face of the milling cutter and the plow cutting effect on the flank surface. A single factor experiment is designed to introduce NMQL and the milling feed factor into the instantaneous milling force coefficient. The average absolute errors in the prediction of milling forces for the NMQL are 13.3%, 2.3%, and 7.6% in the x-, y-, and z-direction, respectively. Compared with the milling forces obtained by dry milling, those by NMQL decrease by 21.4%, 17.7%, and 18.5% in the x-, y-, and z-direction, respectively.

关键词: milling     force     nanofluid minimum quantity lubrication     aerospace aluminum alloy     nano biological lubricant    

ROOT EXUDATES FROM CANOLA EXHIBIT BIOLOGICAL NITRIFICATION INHIBITION AND ARE EFFECTIVE IN INHIBITING

《农业科学与工程前沿(英文)》 2022年 第9卷 第2期   页码 177-186 doi: 10.15302/J-FASE-2021421

摘要:

A range of plant species produce root exudates that inhibit ammonia-oxidizing microorganisms. This biological nitrification inhibition (BNI) capacity can decrease N loss and increase N uptake from the rhizosphere. This study sought evidence for the existence and magnitude of BNI capacity in canola ( Brassica napus). Seedlings of three canola cultivars, Brachiaria humidicola(BNI positive) and wheat ( Triticum aestivum) were grown in a hydroponic system. Root exudates were collected and their inhibition of the ammonia oxidizing bacterium, Nitrosospira multiformis, was tested. Subsequent pot experiments were used to test the inhibition of native nitrifying communities in soil. Root exudates from canola significantly reduced nitrification rates of both N. multiformis cultures and native soil microbial communities. The level of nitrification inhibition across the three cultivars was similar to the well-studied high-BNI species B. humidicola. BNI capacity of canola may have implications for the N dynamics in farming systems and the N uptake efficiency of crops in rotational farming systems. By reducing nitrification rates canola crops may decrease N losses, increase plant N uptake and encourage microbial N immobilization and subsequently increase the pool of organic N that is available for mineralization during the following cereal crops.

关键词: ammonia oxidizing microorganisms / biological nitrification inhibition / farming rotations / nitrogen cycling / nitrogen use efficiency    

Denitrification and phosphorus uptake by DPAOs using nitrite as an electron acceptor by step-feed strategies

Bin MA, Shuying WANG, Guibing ZHU, Shijian GE, Junmin WANG, Nanqi Ren, Yongzhen PENG

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 267-272 doi: 10.1007/s11783-012-0439-2

摘要: Denitrifying phosphorus accumulating organisms (DPAOs) using nitrite as an electron acceptor can reduce more energy. However, nitrite has been reported to have an inhibition on denitrifying phosphorus removal. In this study, the step-feed strategy was proposed to achieve low nitrite concentration, which can avoid or relieve nitrite inhibition. The results showed that denitrification rate, phosphorus uptake rate and the ratio of the phosphorus uptaken to nitrite denitrified (anoxic P/N ratio) increased when the nitrite concentration was 15 mg·L after step-feeding nitrite. The maximum denitrification rate and phosphorus uptake rate was 12.73 mg and 18.75 mg , respectively. These rates were higher than that using nitrate (15 mg·L ) as an electron acceptor. The maximum anoxic P/N ratio was 1.55 mg . When the nitrite concentration increased from 15 to 20 mg after addition of nitrite, the anoxic phosphorus uptake was inhibited by 64.85%, and the denitrification by DPAOs was inhibited by 61.25%. Denitrification rate by DPAOs decreased gradually when nitrite (about 20 mg·L ) was added in the step-feed SBR. These results indicated that the step-feed strategy can be used to achieve denitrifying phosphorus removal using nitrite as an electron acceptor, and nitrite concentration should be maintained at low level (<15 mg·L in this study).

关键词: denitrifying phosphate accumulating organisms (DPAOs)     denitrification     phosphorus uptake     nitrite     step-feed     enhanced biological phosphorus removal    

Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems:

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1495-2

摘要:

• Quorum sensing enhancement and inhibition methods are summarized.

关键词: Quorum sensing     Biological waste treatment     Biofilm formation    

Inhibition character of crotonaldehyde manufacture wastewater on biological acidification

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1403-9

摘要:

• The inhibition of the main organic pollutions in CMW was demonstrated.

关键词: Crotonaldehyde manufacture wastewater     Biological acidification     Volatile fatty acids     Inhibition     Toxic units    

标题 作者 时间 类型 操作

Kinetic analysis of anaerobic phosphorus release during biological phosphorus removal process

DOU Junfeng, LIU Xiang, LUO Guyuan

期刊论文

Enhanced nutrients removal from municipal wastewater through biological phosphorus removal followed by

Yandong Yang,Liang Zhang,Hedong Shao,Shujun Zhang,Pengchao Gu,Yongzhen Peng

期刊论文

Tetrasphaera富集的强化生物除磷微生物组的时间动态和效能关联

王慧, 王玉波, 张国庆, 赵泽, 鞠峰

期刊论文

Occurrence and removal of

Lin WANG,Yongmei LI,Xiaoling SHANG,Jing SHEN

期刊论文

Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant

期刊论文

Microorganism-derived biological macromolecules for tissue engineering

期刊论文

Low intensity ultrasound stimulates biological activity of aerobic activated sludge

LIU Hong, YAN Yixin, WANG Wenyan, YU Yongyong

期刊论文

Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia

Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang

期刊论文

Short-term effect of temperature variation on the competition between PAOs and GAOs during acclimation period of an EBPR system

Nanqi REN, Han KANG, Xiuheng WANG, Nan LI

期刊论文

Overlooked nitrogen-cycling microorganisms in biological wastewater treatment

期刊论文

Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological

期刊论文

ROOT EXUDATES FROM CANOLA EXHIBIT BIOLOGICAL NITRIFICATION INHIBITION AND ARE EFFECTIVE IN INHIBITING

期刊论文

Denitrification and phosphorus uptake by DPAOs using nitrite as an electron acceptor by step-feed strategies

Bin MA, Shuying WANG, Guibing ZHU, Shijian GE, Junmin WANG, Nanqi Ren, Yongzhen PENG

期刊论文

Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems:

期刊论文

Inhibition character of crotonaldehyde manufacture wastewater on biological acidification

期刊论文